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ABSTRACT 

Likelihood  ratio tests  for  the problem:     H  :   F  ec?     versus o 1 
H.:   F   e c?'-(^7    are defined   for certain nonparametric  families 

of distributions   ^   and   c^T   .     In particular the  likelihood 

ratio test   is defined and shown to be unbiased when   c?t 

denotes  the exponential  distributions  (possibly truncated) 
and   &   denotes the distributions with   increasing  failure 
rate.     Comparisons are made with competing tests.    The  problem 
of testing for   increasing  failure  rate average   is also 
examined. 



LIKELIHOOD RATIO TESTS  FOR RESTRICTED FAMILIES 

1.     Introduct ion 

Tests  for composite hypotheses having optimal   properties  for finite samples 

have been obtained   for various special   problems by an   important  principle due to 

Neyman and  Pearson   (1928,   1933)   called  the   likelihood  ratio principle.     This principle 

leads to the   likelihood  ratio test.     Asymptotic properties of  this  tast  for 

parametric  families of distributions can be  found   inWilks   (1962).     Recently 

a conditional   likelihood  ratio test  has  been proposed for testing  for trend   in a 

stochastic  process of  Poisson type   [Boswell   (1966)].     This   is a  departure  from 

the standard  literature  in  that the underlying family of distributions considered 

is essentially nonparametric.    The main  result obtained   is  the asymptotic distribution 

of the   likelihood   ratio under the null   hypothesis of no trend. 

We consider   likelihood   ratio tests   for certain geometrically   restricted 

families of distributions.     For example,   let 

dr   -   j F   |   F(0)   ' 0    and     "]o9   LljfiüLJ    nondecreas ing   in    x > oj  . 

Then   cJT     is  known as  the   IFRA   (for   increasing  failure  rate average)   family of 

distributions.     These distributions play an   important   role   in the  mathematical 

theory of  reliability   [Birnbaum,  Esary,  and  Marshall   (1966)].     However,  not only 

is the  family nonparametric but  there   is  no sigma-finite measure   relative to which 

all     F  e <&~   are absolutely continuous.     Hence,  the usual   concept of maximum 
o 

likelihood estimate does not  suffice.     Kiefer and Wolfowitz   (1956,   p.   893)   propose 

a  generalization of  the maximum  likelihood estimate concept which we adopt.     Let 

F.,  F    ec^and   let     f(-:  F1 ,  F  )    denote 

w. ~: 



the Radon-Nikodym derivative of    F.    with  respect to  the measure   induced  by    F    + F    . 

Definition 1 

F     is called the maximum  likelihood estimate   relative IJ   <ß~   if    F    satisfies 

n 
sup U 
Fedn = l 

f(X.;  F. F) 

1   - WT; F. n = 1   . 

where    X =  (X, ,  X X  )     is a  random sample from some    F e<^ . — l       z n 

This definition   is easily  seen to coincide with the  usual   definition when the 

family    &"   is dominated by a  sigma-finite measure. 

Now consider the problem of testing    H  :   F  e c^g against the alternative 

* A. 

H. :   F   ec^-c^Q    where   c^-. c: c?".     Let    F     (F)     denote tho  maximum  likelihood 

estimate  relative to &    &)     in the sense of definition   1.    We define the 

1 ike 1 ihood ratio statistic    A ()0     based on a  random sample    X    as follows: 

Definition 2 

A (X)     is called  the   likelihood  ratio statistic where 

An(X) =    n 
n " 1 = 1 

fCX.;  F0.  F) 

1 - f(V P0. F) 

We will  be concerned with  the properties of     /L(X)     for various   restricted 

fami1les of distributions   c^   c c^ 
0 

2.  IFRA Distributions 

Let ^ = {F I F(0) = 0 and  -1o3 n-F(x)l T In x > 0} and X = (X., X, , 

..., X )  denotes a random sample from F . We claim that the maximum likelihood 
n 

r 



estimate     (MLE)  F.    relative to  c^n    puts mass at each of the  sample observations. 

To see  this supposed     =   [F.,  F.}    where the    F.     probability of the observation 

X.     is     F.{X.} > 0    for     i   =  1,  2,   ...,  n    and    ^o^k^ =  ^    ^or some    •< (1   < k < n)   . 

From definition  1   it  follows  that     F,     is    MLE     in <^"   .     Since     F  c^    can put 
1 0 

mass at a countable number of points we may  restrict attention to those    F  ec^I 
0 

putting mass at sample points; i.e., F absolutely continuous with respect to 

X + p, where X  is Lebesque measure and M,{A] equals the number of sample 

points in A .  The likelihood becomes 

n 
L (X | F) = H F fX.} . 
n "       i=l    ' 

Proschan and Marshall   (196?)  have obtained the    MLE    under the   IFRA 

assumption.    From the definition of  IFRA distributiorswe see that 

(2.1) Ln(X   |  F)  =     n     fexpl- XMX.)   - exp(- X.X.)] 
i = l 

where    0 < X    < X,  < ...  < X    .    We maximize likelihood subject to these restrictions 
—   o —    I — —    n 

by  letting    X    • 0    and    X    = +«> .    Letting    A X.  = X.   - X._.    where    ^0 
= 0 

and    X    ■ +0° , we see that  (2.0  becomes 
n 

n-1     r n 
(2.2) L   (X   |   F)  =    n        exp(. A >.     I   X.)   Tl   . exp(- A X.X.)] ■[ n - ' :_,     ! !   i+1    J ?   ' 

Maximizing (2.2)  subject to    A X.   > 0  (l   < i  < n)    we  see  that 



(2.3) 4I. = = iT [°' \ "j log    E   X. 
f+l    J 

> 0 

are  the maximum likelihood estimates of    A X.(l  <  i  < n)   .    Substituting  (2.3) 

in  (2.2) we see that  the maximum likelihood according to definition  1  becomes 

n 
T X. 

(2.4) 
n-1 

Ln(X   |   F,)  =     ü 
i = l 1 

X. 
i 

n 
E X. 

- 1 

i 
n 
E X. 
i J 

If we  let    at denote  the  class of all  distributions on the positive axis,  then 

A 

F     is the usual  empirical   distribution function and  the  likelihood  ratio statistic 

for testing    H      versus    H,    becomes 3      o s 

(2.5) W- 
n-1 

n     n 
i = l 

1   - 
X. 

n 
EX, 
i    J 

i 
n 
EX. 
i    J 

We consider the test,    £)  ,  which  rejects    H      when 

UX) < c n —   —    Q, 

where    c      is determined by 
a 

pG Kd) <c„) = * 



and    G(x)  ■ 1   - e'      for    x > 0 .    This choice of a test based on the  likelihood 

ratio statistic  is motivated by the following theorem. 

Theorem 2.1 

The test,  (9  , based on the  likelihood ratio statistic    A (X)     is unbiased n - 

at all  significance  levels  for the  problem 

H     :   F  e^   =  fiFRA] o o 

versus 

H1   :   F  e^ =  [DFRA] 

Proof: 

Let    G(x) =  1   - e'      for    x > 0 .     It   is sufficient to show that    F    z<P~ v ' — o        o 

implies 

(2.6) PG  {/^(Y)  < x}  > PF     f/^(X)   < x] 

and    Fee?"     impl ies 

(2.7) PG  {An(Y) <x}    <PF     (^(X) <x} . 

Let  ^(x) « G'V (x), Y? - * (X.) and note ^Ü. T in x > 0 . Also YV  is 
Oil /\ "^ I 

distributed as the     i-th    order statistic from    G  .   Now 

t(x.)      Mx.) 
< —rr1-   for    j  > i 

X.      -     X. 1 J 

implies 

*..••-    . v— 



V- 
X. ^.(X.)     Y. 

i i  _   i 

n —  n         n ...  ° 

Z X. 7 *(X )    T,  Y'." 
j=i J j=i        j=i J 

Since h(x) = x(l-x) is increas ing in x (0 < x < 1) , it follows that 

where (Y, < Y_ < ... < Y )  is an independent ordered sample from G . (2.6) 
I — Z —    — n 

follows immediately and th proof of (2.7) is similar. || 

We say that  F. < F.  (i.e., F.  is starshaped with respect to F?) if 

F^F^x) 
is nondecreas ing for x > 0 .  From the proof of theorem 2.1 it follows 

that F. £  F.  impl ies 

■v^ti^g^f^yio 

Hence the power of the likelihood ratio test is greater at F9  than at F.  when 

F. ^ F . Percentage points for -log A (X) are given in Table 1. 

Of course there are many unbiased tests of the IFRA hypothesis.  Marshall, 

Walkup and Wets (1966) have characterized the class of all such tests. These are 

just the tests based on functions f(x. , x?, .... x ) having the properties: 

1) f     is homogenous; 

2) T    x.   df(xr  X2 Xn)     > 0    for    j  =  1,  2 n-1 
i=l 9x. and all 

x,   > X-  > ...   > x    > 0   . 
I  —   2 — —    n ~ 



The  test associated with    f    would  reject    H       if J o 

where     c     is   some suitable  critical   number and    X,   > X-   > ...   >X      are the 
1   —    2  — —   n 

usual  order  statistics  labelled   in  reverse order. 

3.     IFR Distributions 

Let c?   =   {F   j   F(0)  = 0    and     - log   [1   - F(x)]     is  convex   for    x > 0]   .     This 

is  the  class  of   IFR  (for   increasing  failure  rate)  distributions.     Proschan and 

Pyke   (1965)  have proposed a t^'   for  constant  versus   increasing failure  rate. 

Their test   is  based on a statistic considered by M.   G.   Kendall   (1938)  and 

H.   B.   Mann   (19^5) and   is essentially a   rank test  for trend.     Proschan and  Pyke 

show that  their test   is unbiased,  has  good  large sample  properties, and   is  competitive 

in this   sense with certain  parametric   tests when the  unknown distribution  lies 

within  some specified parametric  family.     However,   sampling experiments   indicate 

that  their test does not have  good discriminating power  for  relatively  small 

samples.     This   is perhaps to be  expected  since  their  test  does   not use all   of  the 

information   in the sample. 

M.   Boswell   (1966)   studied  a   similar  problem concerning  Poisson type  processes. 
1 

His  statistic   based on a  conditional   maximum  likelihood   ratio  test   is  essentially 

the  same as  the  likelihood   ratio  statistic studied   in this  section.    The main 

result   in  Boswell's  paper   is  a  derivation of  the asymptotic distribution of  his 

test  statistic.     In contrast, we  concentrate on small   sample  results. 

Since   IFR distributions  can have a  jump at  the   right   hand  end of  their 

interval   of   support   it   is  clear   from definition   1   that we  need  only consider 



estimators absolutely continuous with respect  to Lebesgue measure on     [0,  X  ) 
n 

with a jump at    X       (see Barlow and  Proschan,   (1965). P-  26).    Hence 
n 

rn-I 
Ln(X   |  F) TTfoJ  FtXn 

.   I"l J 
) 

where    f    is the density of    F   on     fO,  X  )   .     Since 

1   - F(x) ■ exp 

x 

-    / r(u)du where    r(u)  - f(u)/ri  - F(u)] 

for    0 < u < X   , we may write 
- n' 

r r(u)du 

f(x)  = r(x) e" 0 0 < x < X 

and F(Xnl - •■ 
J     r(u)du 

Hence 

(3.1) 
n-1 

log Ln(X   |  F)  -    Z    log  r(X.)   - 
n " i*l ' i»l 

Z    /     r(u)du 

The problem of maximizing   (3.1) subject to    r(x)    nondecreas ing was  solved by 

Grenander  (1956) and   independently by Marshall  and  Proschan  (1965).    They show 

that the problem can be  reduced to maximizing 

n-1 n-1 
E    log  r(X  )   -    Z    (n  -  i)   (X..   - X.)   r(X.) 

i-1 ' i=l l+, ' ' 

subject to    r(X.)  < r(X  )   < ... < r(X      )   .     The maximum likelihood estimates are 



w ■ £:, ™«[(^xx^. xj..!':.:."!...(n.v.ocvv,)] 

for  i*l,2, ...,n-1 . The maximum likelihood is 

(3.2) Ln(X | F) - 

fn-l     ] 
(n - 1) 

The exponent on    e    can be easily verified using the definition of    f    and observing 

that 
W V 

i+l 

\J    r(u)du.    \   ^'])J ^u)du    ' 

-Xx 
Let   c^  -  {F  I  F(0)  » 0,   F(x)  -   1   - e"AÄ    for    x  < T    and    F(T)  -  1 ,   X > 0, T  > 0] 

Then c^"     denotes the class of exponential  distributions with possible  truncation 

on the  right.    Consider now the problem of testing    H  :   F e-?     versus 

H.:   F   e*9-^   •     The choice of    H      was determined by the fact  that  the     MLE's 
I o o 

F      and    F    are both absolutely continuous with  respect  to Lebesgue measure   in 

[0,  X   )     and place mass at    X     .    The  likelihood  under     H      will   be 1 n r n o 

Ln(i I   Fc' 

fn-l 

■ TT 
LM 

,   -XX i 
Xe       ' 

-XX- 
e      n 

and the maximum  likelihood will   be 

(3.3) 

n-1 
n-1 

L   (X   |   F  ) =/-^ 
n -   '     o       | n 

T X. 

-n 

According to definition 2,   the  likelihood   ratio statistic  for testing for 

truncated exponent i a lity   versus   IFR and  not  truncated exponent ial ity will   be 



10 

(3.M ^ (X) 
n-1 

(" -1) 

(H 
n-l  n-1 

Tt^i) 
i = l ' 

. f 1    < 1  < ... < 1 so that 
,r     (n  -  1)(X2- X,) ~ (n  - 2)(X3- X2)  ~ " (Xn - X^,) 

r(V       (n  -   3)(x.+ri{.) 

then  (3.M becomes 

n-1       , 

C®-/Jf\   -rr(n.t)(x,+1.x.) 

* 
As  in section 2 we consider the test,    cp    , which rejects    H      when 

n    —   —    ot 

where    c       is  determined by 

PG  {An' (Y)  < c^} - o 

The asymptotic distribution of A (Y)  can be found in Boswell (1966, p. 1572). 
n    ~ 

A table of percentage points obtained  using Monte Carlo methods   is contained   in 

Table 2. 

k.    Unbiasedness of the Likelihood  Ratio Test for   IFR 

Like the  Proschan-Pyke test,   the   likelihood  ratio test has greater power 

under the alternative than under the  null  hypothesis.    To show this we need to 

introduce  some auxilliary  results. 



n 

n i 
Given a  sequence of nonnegative  real   numbers    fz.} , plot       E z,    versus 

i«l 1    J 
i    and   interpolate   linearly between    (0,  0),   (1,  z,),   ...   (n,  z,   +  ...  + z )  . 

I l n 

Let    2.  > z-  > ...   > z      denote the slopes of the  least concave majorant to this 1  —   2 — —    n 

graph  in successive   intervals.    This operation converts  the original  sequence  into 

a nonincreas ing sequence and will  be useful   later on.    For convenience,  call 

z.  > 2_ > ...  > "z       the Brunkized sequence after D.  Brunk (see D.   Brunk et.  al. 
i -■   * — ~    n 

(1955)).     Note  that     zi  > z5 > •••  > z      can also be obtained by  successive 

averaging of the original   sequence until   it  becomes nonincreasing. 

We say that    H(z1,  z.,  ...,  z )     is a Schur function  if 1       2 n —.^-——— 

1    J \ä2i     äzjj - 

for all   vectors     z and     i,j»l,2,   ...,n.     This concept   is  needed   in the 

following useful   lemma. 

Lemma  1 

. . 11 1 . 

Let    (z,,  z„,   ....  z  )    and    (z,,  z.,   ....  z )    denote two nonnegative 
l       2 n 1       / n 

sequences such that 

and 

I z.  > Z z. 
1     ' - 1     ' 

E z.  »Ez. 

for     r=l,2,   ...,n-l 

Then the   inequalities are preserved  under  Brunkization; 



4 

12 

r  _     r  -T 
i.e., Ez.>Ez. (r«l,2,...,n-l) 

(0 

If H  is a Schur function then 

_  _      _      ii      i 
(i i)    H(z1 , z2, ... , zn) > H(z1 , z2 z.) 

Proof: 

(i)   is obvious since the   least  concave majorant to the     [z.}    sequence 
i 

lies above  the least concave majorant  to the    {z.}    sequence. 
—r —r n n —r 

Since   (i) holds,    z,  > z.  > ...   > z ', z,  > ...  > z      and    I z. ■ E z 
I—    2~ —nl- —n .     i       . 

we have  (ii)  by the Schur,  Ostrowski  theorem (see Ostrowski   (1952)).  // 

Theorem k.1 

If    G"1F(x)    is convex for    x > 0, G(0) - F(0)  - 0    and    X  (Y)    denotes a 

random sample from    F(G)   ,  then 

An  (X)  < /\.  (Y)     . 
st 

Remark 

This proves the likelihood ratio test A  is unbiased since if F  is  IFR 
n 

-x -1 
and    r,(x) »  1   - e'      for    x > 0  ,  then G    F    is convex on    x > 0 . 

Proof: 

Let    Y* = G"1F(X.)     and  note     Y? » Y.     . 
I i i st    I 

1     "       i=l     ' 

n             n    —r 
Z   2.  =    E    /. 

i=l i=l 



r~ I 
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(n - i)(X.+1- X.) 
Let z. = —j   and 

% (n - i)(X1+1-X.) 

2. = 
(n - i)(Y*+r Y*) 

i   n-1 ,     ,    • 
T    (n- i)(Yi+1.Yi) 

Since  Y. = G F(X.) and G F  is convex 
i        i 

is increasing in  i=l,2, ...,n.  It follows from lemma 3.7 (•) of Barlow 

and Proschan (1966) that 

r    , n-1     , 
T z. T    z. 

1    ' -, 
r -    n-1 
T z. Y    z. 
1     ' 1        ' 

r r 
and hence    T z.   > T z.     for     r=   1,2,...,   n-1.    Let     [2.]    and     fz. ]    denote  the 

1      '  " 1     ' 

Brunki2ed estimates of    [2.}    and     (2.)     respectively.     Let 
1 

n-1 
.H(x. ,  x.,   ... ,  x^)   =   TT    x. 

i = l 

and  note that H     is a Schur function.     Since    {2.]    and     (2.)     satisfy the 

hypotheses  of   lemma   1,   it   follows   that 
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-H(2,,   z   ,   ...,   z       )   ^-HCZ,,   2   ,   ....   z       ) 
!       2 n-I     — I       2 n-l 

Hence 

(4.0 1 
fn-I 

r   (n - 
. 1 

OCx..,- x.) 
i + i     i 

n-l  n-I 
1       ?(X.) 
I 

 I_ 

\ (n-i)(Y';lY;) 
n-l   n-l 

TT nr) 

S ince 

: (n - f)(y:+l-Y!)     rv; 

r — n 
I  (n   -   i)(X.i.- X.) V X, 

for     (1       r < n   -  I)     by   lemma  3.7  (i1) of Barlow and  Proschan  (1966)   it   follows  that 

(4.2) 
n-l 

T. (n  -   0(X. + 1-  X.) 
n-l 

T. in   -   i)(Y'. + r Y.") 

n 
T. X 
1 

i 
T Y'.' 

(4.1)   and  (4.2)   together   imply 

A:(X)  < A"(Y") n —   —    n — 

The   theorem follows  from     (Y, ,   Yn,   ...,   Y  )  =  (Y"     V'',   ....  Y")   .   // 
\       i n   s t      i       / n 

Marshal 1, Wal kup and Wets   (1966) have characterized  the class of unbiased 

tests   for constant   failure   rate  versus  nondecreasing  failure  rate.     These are 

based  on  functions     hO«,,   x   ,   ..., x   )     satisfying  the  conditions 
l       Z n 



15 

i)    h     is homogeneous; 

j f$y(*y  ....  x_) 
i)       T.    (x -   x      )   1— 2-    >o    j   =  1.  2,   ...,   n  -  1 

for all     x.   ^ Xj ^ ...   > x    > 0   .    The corresponding test  consists of  rejecting 

exponentiality   if    h(X   ,  X   ,   ...,  X  )     <    c    where    c     is  a  suitable critical   number 

and    X,   > X„  > ...   > X      are  the order statistics   labelled   in  reverse order. 
1  -    2 - -    n 

5.     Distribution of the Maximum Likelihood Ratio Statistic  Under the  Exponential 

Assumpt. ion 

From the computations   in  Boswell   (1966)   it   is  clear  that  the distribution of 

A    ,   even under  the null  hypothesis,   is exceedingly complicated.     For this   reason 

we have had  to use Monte Carlo methods  to obtain the percentage points tabulated 

in Table  2. However,   the   distribution of    A      under     H       is quite  smooth 
n o 

as we   show   in 

Theorem  $.1 

The   likelihood  ratio  statistic     A"    has a nonincreasing  density on     (0,   l) 

under  the exponential   assumption. 

Proof: 

Let  0 = W- < W, < ... < W  denote an ordered sample from the uniform 
— 0 — l —    — n 

distribution on  (0, 1) .  Let 

U. = W. - W.^    i = 1, 2, ... , n - 1 . 
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Then the random vector     (U.,  U ,  ....  U    .)    has joint density 

(n-l):     for    u.   > 0 
i   — 

i=l,2,   ...,n-l 
h(u. ,  u u       ) = 

£ n ■ 0<U+IJ+...+U1<1 
—    1 2 n-1   — 

otherwise. 

Let     (U,,  11»   •• • t   U     .)     denote the modified  vector     (U,»   LL,   ...,   U    ,)    after 
\       I n -1 \       t. n-1 

Brunkization and  subiect  to    U,  > UL  > ...   > U    ,   . \  —    t — —    n-1 

The  likelihood   ratio statistic 

'n'W  g/n      Vn-1   'n-l  
fT    r(Y   ) 

1 

n-1   n']  - 
is distributed as     (n   -  l) ff under  the exponential   assumption.     Notationally 

I       ' 
it will  be convenient  to replace    n-1     by    n   .     Hence we need only  prove that 

(   n    _ ) 
P     TT   U.  <z 

li=l ~     ) 

is  concave   in    z   c  (0,   l)   .     Let     I    denote  the  usual   indicator set  function and 

observe that 

P ! ff  U.   < z       = nl   ff ...   f   I   Tu    ...   u < z] du ,   ...  du 
1 n 

0<u,+..+u <1 
- 1 n- 
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Integrating out on    u      we  have 
n 

P
1TT

D
^

2
I -*SI J f(v u.>0 

I— 
u,+...+u     ,<1 

1 n-1- 

.,  u    _;   z)du,   ...  du    . 
n-z I n-l 

where 

f(u.,   ....   u     1;   z)   =      /    I   ru|...un < z]du 
(Ku  <1 -u, -. .. -u     , 
- n-      1 n-l 

= min  [1   - u,   -  ...   -  u     ,,   u  (z)l v 1 n-l       n       J 

and     u  (z)     is  the solution of    z = u,   ...   u     .   u 
n l     n -1  n 

for fixed u, , u. u  . . 
12       n-l 

We claim that  z  is a strictly increasing convex function of u  and, 3 n 

therefore,   that     u     is a strictly   increasing concave   function of    z   .      It   follows 

that     f(u,,   ...,   u     .,   z)      is a  concave  function of    z     for fixed     (u, ,   u-,   ..,  u     ,) 
s n-l l       z n-1 

Hence 

i^H -* tt-^J f(u'' u       ;   z)du 
n-l i 

du n-l 

u, + . .+U      ,"^1 
I n-1- 

is  a  concave  function of     z   . 

To show    z "  u.   ...   u     ,u       isa  convex  function of    u    ,     define 
1 n-l     n n 

(u.,   ...,   u       )     to  be   the   Brunk modification of     (u   ,   u   ,   ...,   u     .)     subject 

to     u,   > u0  >  ...   > u     .   .     Clearly    z     is  piecewise  convex  for    u       in  the 
I  —    Z — -    n-1 n 

intervals     ^0,  u    „"!,   ru n-Z " n-2'     n-3J 1, ..., n - u, ... - u n-r ui- It   is 

therefore sufficient to show that  z has a continuous derivative in  u  .  We show 
n 

that the right and left hand derivatives at un = iT^  are equal.  For un < u^ 
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dz 
d 

,  /u.   .+•..+u    ,\ 
— = U,   ...   u.   I-I r—: 1 
u 1 j  \       n-l-j / 

n-j-l 

For    u     1<u     <u    . 
n-1 n n-2 

dz -* —    l   j + l "1 -— =  u,   ...   u.     I-J : 1 
dun 1 j    \ n-j / 

For    u    =  ü     ,   ,  obviously 
n n-1 

(u.^. + .-.+u     ,v / u._._,*. ..+u    .♦u   \ 

'^..-j     -')   '   (    ^   n-J     -     ") •   II 

For n = !?  and n = 3  it is a straightforward computation to obtain the 

distribution of  A (Y) .  Clearly, for n « 2 
n ■" 

^'(Y) = U, 

and  the   likelihood   ratio  is  uniformly distributed on     (0,   1)   . 

For    n = 3 

A^(Y)  = ^ ^   l^ 

14  Ul   ^ if   u, > Uj 

(U,  + U2) if    U,  < U^ 

Hence 

PG}^'(Y)   < uj     =   //2U    du,   du7  +    //     2      du,   m u    u"l   ""2        •'.«' ^ V    "'l   "2 
U]U2- T) "      ("«"'■"olN^ 

U^U2 U1^U2 

and 

pcK^-^KH^M'N*) 
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The density   is 

g3(u)   =i+i   log 
1   +>/T 

s] 

It   is easy  to check that     g     is decreasing,     g,(0)   = + OB,   g_(l)  = ^    and 

93(0)  - 93(1) =  -  «  ..    It   is   tempting  to conjecture   that  this  behavior   is  true 
1 1 

in general,   i.e.,     g(0)  = + oD)g(o)  = g(l)  =  -oc    for    n>3- 
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TABLE 1 

Percentage Points 
for -log A (Y) 

Sample S ize 
n .01 

Percent 
.05 

iles 
.90 .99 

2 0.015 !       0.072 3-3 ^•85 

3 0.216 O.kSO 5-25 7-25 

k 0.6 1 .1 6.9 9.0 

5 1.2 1.8 8.6 10.8 

6 1.7 2.5 10.1 12.6 

7 2.k 3.3 11.7 1^.3 

8 3-0 ^4.2 13.2 15-8 

9 3-7 5-0 1*4.7 17.6 

10 k.S 5-8 16.1 19.2 

Note that we use lower percent lies for testing exponentiality 
versus IFRA and upper percentiles for testing IFRA versus DFRA, 



TABLE 2 

Percentage Points for the IFR 

Likel ihood Ratio Statistic  A"(Y) 
n - 

20a 

Sample Size 
n 

Percer 
.05 

itiles 
.01 

Number of Random 
Simulations  Used 

2 .0500 .0100 50,000 

3 .025 .00k 50,000 

k .0162 .0027 i|0,000 

5 .0125 .0017 50,000 

6 .01 .0015 60,000 

7 .0087 .001 60,000 

8 ■ 0077 .001 80,000 

9 .0065 .0007 70,000 

10                   | .0055 .0007 50,000 
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6.  Comparisons with Competing Tests 

In a paper in process (Barlow and Jacobson) we study in some detail the 

robustness of the IFRA and IFR likelihood ratio tests relative to selected competing 

tests.  Preliminary investigations indicate that the IFR likelihood ratio test is 

much better th«n  the Proschan-Pyke test for small samples.  However, they have 

achieved a remarkable amount of information concerning the asymptotic behavior of 

their test statistic.  In particular they show that their test statistic, suitably 

normalized, has an asymptotic normal distribution for a wide class of alternative 

distributions.  On the other hand, the distribution of the IFR 1 ikel ihood ratio 

2 
statistic, under the null hypothesis, converges to a weighted sum of X  distributions 

which is rather cumbersome to compute.  For small sample sizes  (say n < 10)  both 

statistics are relatively easy to compute with the aid of a desk calculator. 

Figure 1 is a graph of the power functions for both tests against Weibull 

-(>x)0' 
distribution alternat ives  (i.e.,  F(x)=l-e       for x>0 where a    is 

the shape parameter) when the sample size is 10 and the significance level is 

5%.  These curves were obtained by means of Monte Carlo simulation on a computer. 

The power of the Proschan-Pyke test increases very slowly as a function of the 

Weibull shape parameter,  o .  Even when the shape parameter » = 3 . the power is 

only .62.  Our numerical investigaions indicate that for rv > 3  the power increases 

even more slowly and that for cy = 500 , the power is only .86.  For n = 20 , 

the power of the Proschan-Pyke test is much better; it yields a power of .92 for 

fv = 3 .  It should be noted, however, that the power of this test is still not as 

good as the power of the likelihood ratio test when n = 10 . 

The asymptotic relative efficiency of the Proschan-Pyke test relative to the 

Weibull likelihood ratio test when the true distribution is of the form G(x) = 

-(x)0' 
1 - e      (cc > l)  for x > 0 was computed to be .59 (see Proschan-Pyke (1965)). 

The asymptotic relative efficiency of their test relative to the gamma likelihood 
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ratio test when the true distribution is the gamma is only .20.  Unfortunately, 

asymptotic evaluation of the IFR likelihood ratio test seems to be extremely difficult 

There are many additional unbiased tests of exponentiality versus IFRA or 

IFR which should perhaps be considered.  Recall that all of the associated 

statistics are necessarily homogeneous.  A statistic related to the IFR likelihood 

rat'o stat i st ic is 

C <*) -I--]   TT 'n - i + 0 (*, -x;.,) 

If  there are  no  reversals of  the  normalized  differences   (they  should  decrease  under 

IFR alternatives)   then     A      and     A        agree  except   for the  factor    n X,     and  a 
n      n I 

constant.  If G  F  is convex, then 

c w < C w ■ n  - - n  - 

The  test which   rejects exponentiality when     A       (X)     is sufficiently   large   is  related 

to a  test  derived by  Moran   (1950   for a  problem  concerning   renewal   processes.     Under 

the assumption of exponentiality 

-2 log A"''(Y) 

W =  
1 + n+1 

6n 

2 
is asymptotically distributed as a x  variable with n - 1 degrees of freedom. 

Epstein's (i960) test 8 uses this statistic. Monte Carlo experiments by Zelen 

(1961) indicate that the power of this test is less than that of the Proschan-Pyke 

test for small samples against Weibull distribution alternatives. 

In section 2 we proved that F < G  implies 
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n     -   s-    n    - 

Hence we  could  consider  the   test,     cc        ,  which   rejects  exponentiality   in  favor of 

the   IFRA hypothesis when     A  (X)   > c, where 
n — —  I -ry 

P. JA (Y) > c.  I = 1 - P  lAn(Y) < c. } = cy    . 
G | n — —  I--/|        Gin——  l-fYJ 

For this test we would use the upper percentile points of  -log A (X)  given in 

Table 1.  Since  A (X)  is essentially the maximum likelihood under the IFRA 
n — 

assumption it is perhaps not too surprising that It seems superior to the IFR 

likelihood ratio test (see Fig. l).  On the basis of computer calculations we 

conjecture that  -log A (Y), suitably normalized, Is asymptotically N(0, l) . 
n — 

Perhaps a better  test   than all   o1   those considered so   far   is a un i form 

conditional   test   [see  Cox and  Lewis   (1966)  p.   153] based  on  the  mean of  the 

rectangular  distribution.     This  has  been  described  by  Bartholomew as  the  oldest 

known statistical   test   [see discussion   in Cox   (1955)]-     Epstein   (i960)   adapted  this 

test   to  the   life  testing problem and  called   it   test   3-     The   test   is  based on  the 

total   time on  test  up  to the     i-th    order  statistic     (i  =   1,   2 n),   i.e., 

i 
T   (X  )   =    E (n   - j   +  1)   (X     - X       )   . 

j = l J J 

n-1 n 
The  test  statistic   Is       £    T(X.)/ T. X,   .     Under  the exponential   hypothesis 

i=l ' 1      ' 

n-1 ,        v     n 

t    T(X.)   - ^fLL    E X. 

2  =       1 ' 2 1      ' 
n   
E X.   y/{n   -   1)/12 
1      ' 



2U 

is  approximately     N(0,   l)     even  for   relatively  small     n   .      If     F  < G   ,   then   it 

follows   from Theorem  3-'2   (Mi)   [Barlow and   Proschan   (1966) ]    that 

n-1 n-1 
T T(X.) T T(Y.) 
1 ' 1 ' 

n 
K X.        st      F. Y. 
I      ' 1      ' 

Hence a  natural   test,     cp .   rejects  exponent ial i ty   in 

favor of   IFRA   i f 
n-1 T(X.) 

y. 
1 

- 
n 

■-* c 
-       r, 

1 
Z X 
1 ' 

(n-1 n 1 
where P.       K T(Y.)/ X Y.   > c   } = cy  . G  I   1 '        1      '   "    ^j 

Empirical   sampling     by  Zelen and  Dannemiller   [(1961),  p.   47]  indicates   that   this 

test   is  superior   to    cc        against  Weibull   distribution alternatives.      Investigations 

by  Cox   (1955)   show  that  the  analogue  of   this   test   for  randomness   in  a   sequence 

of events   is   the most  powerful   test  of  the   Poisson hypothesis  against   the alternative 

of a  time-dependent   Poisson process with occurrence   rate 

>(t)   =e-fBt     . 

See Bartholomew (1956) for further results concerning this test. 

7.  Concluding Remarks 

It is perhaps worth noting that the percentage points in Table 2 and the results 

of sect ion 5 also apply to the Boswell test for trend in a stochastic process of 

Poisson type.  However, if the sample size is  n and one is using the Boswell 

statistic then one should locate percentage points in Table 2 corresponding to 
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the number n + 1 . A proof for unbiasedness of the Boswell test can be made, 

patterned after the techniques of section k. 

The number of possible likelihood ratio tests which may be constructed using 

the definitions in section 1 is fairly large.  Recall that the DFR (for decreasing 

failure rate) maximum likelihood estimate is absolutely continuous when  F(0) = 0 

TMarshall and Proschan (1965)]-  Hence one can construct a likelihood ratio test 

for the following problems; 

(l)       versus 

versus 

H : F  a truncated exponential 

H : F  DFR and then IFR  (F(0) = 0) 

H : F  IFR 

H : F  DFR and then IFR (F(0) = 0) . 

Note that the maximum likelihood estimates under both the hypothesis and the 

alternative in each case will be absolutely continuous except at the largest 

observation, X  , if we impose the additional restriction  F(0) = 0 . 
n 

Clearly we can also construct a maximum likelihood test for 

H : F  truncated DFR 
(3) versus 

H : F  DFR and then IFR. 

There is no difficulty in constructing maximum likelihood tests for the problems: 

(M versus 

and 

(5) versus 

H : F exponential 

H : F DFR  (F(0) = 0) 

H0: F  DFR  (F(0) = 0) 

H   :   F     has decreasing density     (F(0)  =  0) 

and    F    not DFR 
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The maximum likelihood estimate assuming a decreasing density is given by Grenander 

(1956).  Recall that if F  is DFR, then it has a decreasing density. 

Likelihood ratio tests for the two sample problem will be considered in a 

subsequent paper. 
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